Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Arch Dis Child Fetal Neonatal Ed ; 109(2): 128-134, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37751992

RESUMO

OBJECTIVE: Staphylococcus capitis, a coagulase-negative staphylococci (CoNS) species, has been increasingly detected from UK sterile site samples and has caused neonatal unit outbreaks worldwide. We compared survival to discharge and 30-day mortality for the detection of S. capitis versus other CoNS species. METHODS: In this retrospective case-control study, we included hospitalised infants with any CoNS species detected from a normally sterile body site up to 90 days of age. We linked English laboratory reports from the Second Generation Surveillance System database, mortality data from the Personal Demographics Service, and neonatal unit admissions from the National Neonatal Research Database. In primary analysis, multivariable logistic regression was used, with two co-primary outcomes: survival to discharge and death within 30 days of positive specimen date. Sensitivity analyses using multiply imputed datasets followed. RESULTS: We identified 16 636 CoNS episodes relating to 13 745 infants. CoNS episodes were highest among infants born extremely preterm (22-27 weeks) and with extremely low birth weight (400-999 g). In primary analysis, there were no differences in survival to discharge (p=0.71) or 30-day mortality (p=0.77) between CoNS species. In sensitivity analyses, there were no differences in outcomes between infection with four of the most common CoNS species (Staphylococcus epidermidis, S. capitis, Staphylococcus haemolyticus and Staphylococcus warneri) but the remaining CoNS species were at higher risk of adverse outcomes when treated in aggregate. CONCLUSION: Infants with S. capitis detected from sterile site samples did not experience significant differences in either survival to discharge or 30-day mortality compared with infants with detection of other common CoNS species.


Assuntos
Infecções Estafilocócicas , Staphylococcus capitis , Humanos , Recém-Nascido , Estudos de Casos e Controles , Inglaterra/epidemiologia , Estudos Retrospectivos , Infecções Estafilocócicas/epidemiologia , Lactente Extremamente Prematuro , Nascimento Prematuro
2.
Microb Biotechnol ; 16(11): 2181-2193, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37850940

RESUMO

Staphylococcus capitis is a member of the human and mammal skin microbiomes and is considered less harmful than Staphylococcus aureus. S. capitis subsp. urealyticus BN2 was isolated from a cat and expressed strong antibacterial activity against a range of Gram-positive species, most notably including S. aureus strains with resistance to methicillin (MRSA) and strains with intermediate resistance to vancomycin (VISA). These latter strains are normally relatively resistant to bacteriocins, due to cell wall and cell membrane modifications. Genomic sequencing showed that the strain harboured at least two complete gene clusters for biosynthesis of antagonistic substances. The complete biosynthetic gene cluster of the well-known lantibiotic gallidermin was encoded on a large plasmid and the mature peptide was present in isopropanol cell extracts. In addition, a chromosomal island contained a novel non-ribosomal peptide synthetase (NRPS) gene cluster. Accidental deletion of two NRPS modules and partial purification of the anti-VISA activity showed that this novel bacteriocin represents a complex of differently decorated, non-ribosomal peptides. Additionally, a number of phenol-soluble modulins (PSMs) was detected by mass spectrometry of whole cells. Producing these compounds, the strain was able to outcompete several S. aureus strains, including MRSA and VISA, in tube cultures.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus capitis , Animais , Humanos , Staphylococcus aureus/genética , Antibacterianos , Bacteriocinas/genética , Infecções Estafilocócicas/microbiologia , Peptídeos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Mamíferos
3.
Microb Genom ; 9(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791541

RESUMO

Staphylococcus capitis is a frequent cause of late-onset sepsis in neonates admitted to Neonatal Intensive Care Units (NICU). One clone of S. capitis, NRCS-A has been isolated from NICUs globally although the reasons for the global success of this clone are not well understood.We analysed a collection of S. capitis colonising babies admitted to two NICUs, one in the UK and one in Germany as well as corresponding pathological clinical isolates. Genome analysis identified a population structure of three groups; non-NRCS-A isolates, NRCS-A isolates, and a group of 'proto NRCS-A' - isolates closely related to NRCS-A but not associated with neonatal infection. All bloodstream isolates belonged to the NRCS-A group and were indistinguishable from strains carried on the skin or in the gut. NRCS-A isolates showed increased tolerance to chlorhexidine and antibiotics relative to the other S. capitis as well as enhanced ability to grow at higher pH values. Analysis of the pangenome of 138 isolates identified characteristic nsr and tarJ genes in both the NRCS-A and proto groups. A CRISPR-cas system was only seen in NRCS-A isolates which also showed enrichment of genes for metal acquisition and transport.We found evidence for transmission of S. capitis NRCS-A within NICU, with related isolates shared between babies and multiple acquisitions by some babies. Our data show NRCS-A strains commonly colonise uninfected babies in NICU representing a potential reservoir for potential infection. This work provides more evidence that adaptation to survive in the gut and on skin facilitates spread of NRCS-A, and that metal acquisition and tolerance may be important to the biology of NRCS-A. Understanding how NRCS-A survives in NICUs can help develop infection control procedures against this clone.


Assuntos
Sepse , Infecções Estafilocócicas , Staphylococcus capitis , Lactente , Recém-Nascido , Adulto , Humanos , Staphylococcus capitis/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/uso terapêutico , Unidades de Terapia Intensiva Neonatal
4.
J Infect ; 87(3): 210-219, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394013

RESUMO

OBJECTIVE: Increased incidence of neonatal Staphylococcus capitis bacteraemia in summer 2020, London, raised suspicion of widespread multidrug-resistant clone NRCS-A. We set out to investigate the molecular epidemiology of this clone in neonatal units (NNUs) across the UK. METHODS: We conducted whole-genome sequencing (WGS) on presumptive S. capitis NRCS-A isolates collected from infants admitted to nationwide NNUs and from environmental sampling in two distinct NNUs in 2021. Previously published S. capitis genomes were added for comparison. Genetic clusters of NRCS-A isolates were defined based on core-genome single-nucleotide polymorphisms. RESULTS: We analysed WGS data of 838 S. capitis isolates and identified 750 NRCS-A isolates. We discovered a possible UK-specific NRCS-A lineage consisting of 611 isolates collected between 2005 and 2021. We determined 28 genetic clusters of NRCS-A isolates, which covered all geographical regions in the UK, and isolates of 19 genetic clusters were found in ≥2 regions, suggesting inter-regional spread. Within the NRCS-A clone, strong genetic relatedness was identified between contemporary clinical and incubator-associated fomite isolates and between clinical isolates associated with inter-hospital infant transfer. CONCLUSIONS: This WGS-based study confirms the dispersion of S. capitis NRCS-A clone amongst NNUs across the UK and urges research on improving clinical management of neonatal S. capitis infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus capitis , Lactente , Recém-Nascido , Humanos , Staphylococcus capitis/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Unidades de Terapia Intensiva Neonatal , Reino Unido/epidemiologia
5.
Antimicrob Resist Infect Control ; 12(1): 68, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443079

RESUMO

INTRODUCTION: This study aimed to assess the role of adenosine triphosphate (ATP) bioluminescence level monitoring for identifying reservoirs of the outbreak pathogen during two consecutive outbreaks caused by Enterococcus faecium and Staphylococcus capitis at a neonatal intensive care unit (NICU). The secondary aim was to evaluate the long-term sustainability of the infection control measures employed one year after the final intervention measures. METHODS: Two outbreaks occurred during a 53-day period in two disconnected subunits, A and B, that share the same attending physicians. ATP bioluminescence level monitoring, environmental cultures, and hand cultures from healthcare workers (HCW) in the NICU were performed. Pulsed-field gel electrophoresis (PFGE) typing was carried out to investigate the phylogenetic relatedness of the isolated strains. RESULTS: Four cases of E. faecium sepsis (patients A-8, A-7, A-9, B-8) and three cases of S. capitis sepsis (patients A-16, A-2, B-8) were diagnosed in six preterm infants over a span of 53 days. ATP levels remained high on keyboard 1 of the main station (2076 relative light unit [RLU]/100 cm2) and the keyboard of bed A-9 (4886 RLU/100 cm2). By guidance with the ATP results, environmental cultures showed that E. faecium isolated from the patients and from the main station's keyboard 1 were genotypically indistinguishable. Two different S. capitis strains caused sepsis in three patients. A total 77.8% (n = 7/9) of S. capitis cultured from HCW's hands were genotypically indistinguishable to the strains isolated from A-2 and A-16. The remaining 22.2% (n = 2/9) were genotypically indistinguishable to patient B-8. Three interventions to decrease the risk of bacterial transmission were applied, with the final intervention including a switch of all keyboards and mice in NICU-A and B to disinfectable ones. Post-intervention prospective monitoring up to one year showed a decrease in blood culture positivity (P = 0.0019) and catheter-related blood stream infection rate (P = 0.016) before and after intervention. CONCLUSION: ATP monitoring is an effective tool in identifying difficult to disinfect areas in NICUs. Non-medical devices may serve as reservoirs of pathogens causing nosocomial outbreaks, and HCWs' hands contribute to bacterial transmission in NICUs.


Assuntos
Infecção Hospitalar , Enterococcus faecium , Sepse , Infecções Estafilocócicas , Staphylococcus capitis , Recém-Nascido , Humanos , Infecção Hospitalar/prevenção & controle , Unidades de Terapia Intensiva Neonatal , Enterococcus faecium/genética , Infecções Estafilocócicas/epidemiologia , Filogenia , Estudos Prospectivos , Recém-Nascido Prematuro , Sepse/microbiologia , Surtos de Doenças
6.
J Hosp Infect ; 140: 8-14, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487793

RESUMO

BACKGROUND: The multidrug-resistant Staphylococcus capitis clone, NRCS-A, is increasingly associated with late-onset sepsis in low birthweight newborns in neonatal intensive care units (NICUs) in England and globally. Understanding where this bacterium survives and persists within the NICU environment is key to developing and implementing effective control measures. AIM: To investigate the potential for S. capitis to colonize surfaces within NICUs. METHODS: Surface swabs were collected from four NICUs with and without known NRCS-A colonizations/infections present at the time of sampling. Samples were cultured and S. capitis isolates analysed via whole-genome sequencing. Survival of NRCS-A on plastic surfaces was assessed over time and compared to that of non-NRCS-A isolates. The bactericidal activity of commonly used chemical disinfectants against S. capitis was assessed. FINDINGS: Of 173 surfaces sampled, 40 (21.1%) harboured S. capitis with 30 isolates (75%) being NRCS-A. Whereas S. capitis was recovered from surfaces across the NICU, the NRCS-A clone was rarely recovered from outside the immediate neonatal bedspace. Incubators and other bedside equipment were contaminated with NRCS-A regardless of clinical case detection. In the absence of cleaning, S. capitis was able to survive for three days with minimal losses in viability (<0.5 log10 reduction). Sodium troclosene and a QAC-based detergent/disinfectant reduced S. capitis to below detectable levels. CONCLUSION: S. capitis NRCS-A can be readily recovered from the NICU environment, even in units with no recent reported clinical cases of S. capitis infection, highlighting a need for appropriate national guidance on cleaning within the neonatal care environment.


Assuntos
Desinfetantes , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Staphylococcus capitis , Recém-Nascido , Humanos , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Sepse/microbiologia , Unidades de Terapia Intensiva Neonatal , Desinfetantes/farmacologia
7.
Microb Drug Resist ; 29(9): 388-391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222764

RESUMO

Although coagulase negative staphylococci are rarely associated with complicated diseases, in some cases they cause life-threatening infections. Here we described a clinical case of a bacteremia due to a methicillin- and linezolid-resistant Staphylococcus capitis in a patient previously treated with linezolid. Whole genome sequencing revealed the common mutation G2576T in all rDNA 23S alleles and several acquired resistance genes. Moreover, the isolate was epidemiologically distant from the NRCS-A clade, usually responsible for nosocomial infections in neonatal intensive care units. Our findings further confirm the ability of minor staphylococci to acquire antibiotic resistances and challenge the treatment of these infections.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus capitis , Recém-Nascido , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Coagulase/genética , Testes de Sensibilidade Microbiana , Staphylococcus/genética , Bacteriemia/tratamento farmacológico , Genômica , Hospitais
8.
J Glob Antimicrob Resist ; 33: 155-163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36724854

RESUMO

OBJECTIVES: Linezolid-resistant Staphylococcus capitis (LRSC) has become a new challenge for clinical anti-infective therapy. The present study aimed to investigate the trends of LRSC prevalence in a tertiary hospital of China 2017-2020. The resistance mechanisms, virulence genes, biofilm formation, and mass spectrometric characteristics of LRSC isolates were also analysed. METHODS: This study retrospectively analysed the antibiotic resistance trends of coagulase negative staphylococci (CoNS) isolated from clinical samples collected between 2017-2020. Antimicrobial resistance profiles were tested by micro-broth dilution and the E-test method. Antimicrobial resistance genes and virulence genes were detected by polymerase chain reaction, and dru-typing sequences were obtained by Sanger sequencing. Crystal violet staining in 96-well plates was used to detect biofilm formation ability. Mass spectrometric characterization of LRSC was analysed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled with ClinProTools. RESULTS: The linezolid resistance rate in 3575 CoNS clinical strains was 1.6%, wherein the great majority of was LRSC (91.1%, n = 51/56), with a resistant rate of 15.5% (n = 51/328) in all S. capitis isolates. In this study, 48 out of the 51 LRSC strains and 54 of 277 linezolid-susceptible S. capitis (LSSC) strains were enrolled. G2576T, C2104T, T2130A, C2163T, and T2319C mutations in the 23S rRNA V region and acquisition of cfr were the main linezolid resistant mechanisms in LRSC. The biofilm-forming ability of LRSC was more potent than LSSC, with a higher detection rate of bap (P < 0.05). Eleven mass spectrometric peaks of interest were identified by using MALDI-TOF MS and ClinProTools, which were differently distributed between LRSC and LSSC strains, with the area under the receiver operating characteristic curve of more than 0.8, especially for 5465.37 m/z. CONCLUSIONS: Linezolid resistance was mediated by mutations in the 23S rRNA V region and presence of the cfr gene in LRSC strains. LRSC strains have stronger biofilm-forming ability than LSSC strains, which maybe associated with the adhesion-related gene of bap. Further, linezolid-resistant and linezolid-susceptible S. capitis could be rapidly identified with mass spectrometric characterization. To the best of our knowledge, this study is the first to document the biofilm formation ability of LRSC and the potential usefulness of MALDI-TOF MS for the discrimination of LRSC and LSSC.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus capitis , Linezolida/farmacologia , Staphylococcus capitis/genética , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Centros de Atenção Terciária , RNA Ribossômico 23S/genética , Prevalência , Estudos Retrospectivos , Staphylococcus/genética , Biofilmes
9.
J Biomol Struct Dyn ; 41(20): 10450-10462, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36546696

RESUMO

Cold-adapted and organic solvent tolerant lipases have significant potential in a wide range of synthetic reactions in industry. But there are no sufficient studies on how these enzymes interacts with their substrates. Herein, the predicted structure and function of the Staphylococcus capitis lipase (SCL) are studied. Given the high amino acid sequence homology with the Staphylococcus simulans lipase (SSL), 3D structure models of closed and open forms of the S. capitis lipase were built using the structure of SSL as template. The models suggested the presence of a main lid and a second lid that may act with the former as a double door to control the access to the active site. The SCL models also allowed us to identify key residues involved in binding substrates, calcium or zinc ions. By following this model and utilizing molecular dynamics (MD) simulations, the stability of the S. capitis lipase at low temperatures could be explained in the presence and in the absence of calcium and zinc. Due to its thermolability, the SCL is extremely valuable for different biotechnological applications in a wide variety of industries from molecular biology to detergency to food and beverage preparation.Communicated by Ramaswamy H. Sarma.


Assuntos
Cálcio , Staphylococcus capitis , Cálcio/metabolismo , Staphylococcus capitis/metabolismo , Simulação de Dinâmica Molecular , Lipase/química , Zinco , Íons
10.
Front Cell Infect Microbiol ; 12: 1060825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467721

RESUMO

Introduction: In neonatal intensive care units (NICUs), the standard chemical-based disinfection procedures do not allow a complete eradication of pathogens from environmental surfaces. In particular, the clone Staphylococcus capitis NRCS-A, a significant pathogen in neonates, was shown to colonize neonatal incubators. The aim of this study was to evaluate the in vitro effect of a bacteriophage cocktail on NRCS-A eradication. Methods: Three bacteriophages were isolated, genetically characterized and assessed for their host range using a collection of representative clinical strains (n=31) belonging to the clone NRCS-A. The efficacy of a cocktail including these three bacteriophages to eradicate the reference strain S. capitis NRCS-A CR01 was determined in comparison or in combination with the chemical disinfectant Surfanios Premium on either dry inoculum or biofilm-embedded bacteria. The emergence of bacterial resistance against the bacteriophages alone or in cocktail was evaluated by growth kinetics. Results: The three bacteriophages belonged to two families and genera, namely Herelleviridae/Kayvirus for V1SC01 and V1SC04 and Rountreeviridae/Andhravirus for V1SC05. They were active against 17, 25 and 16 of the 31 tested strains respectively. Bacteriophage cocktails decreased the bacterial inoculum of both dry spots and biofilms, with a dose dependent effect. The sequential treatment with bacteriophages then Surfanios Premium did not show enhanced efficacy. No bacterial resistance was observed when using the bacteriophage cocktail. Discussion: This study established a proof-of-concept for the use of bacteriophages to fight against S. capitis NRCS-A. Further investigations are needed using a larger bacterial collection and in real-life conditions before being able to use such technology in NICUs.


Assuntos
Bacteriófagos , Staphylococcus capitis , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Descontaminação , Especificidade de Hospedeiro
11.
Microbiol Spectr ; 10(6): e0421522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409142

RESUMO

The clone Staphylococcus capitis NRCS-A is responsible for late-onset sepsis in neonatal intensive care units (NICUs) worldwide. Over time, this clone has evolved into three subgroups that are increasingly adapted to the NICU environment. This study aimed to decipher the mechanisms involved in NRCS-A persistence in NICUs. Twenty-six S. capitis strains belonging to each of the three NRCS-A clone subgroups and two other non-NRCS-A groups from neonates (alpha clone) or from adult patients ("other strains") were compared based on growth kinetics and ability to form biofilm as well as tolerance to desiccation and to different disinfectants. S. capitis biofilm formation was enhanced in rich medium and decreased under conditions of nutrient stress for all strains. However, under conditions of nutrient stress, NRCS-A strains presented an enhanced ability to adhere and form a thin biofilm containing more viable and culturable bacteria (mean 5.7 log10 CFU) than the strains from alpha clone (mean, 1.1 log10 CFU) and the "other strains" (mean, 4.2 log10 CFU) (P < 0.0001). The biofilm is composed of bacterial aggregates with a matrix mainly composed of polysaccharides. The NRCS-A clone also showed better persistence after a 48-h desiccation. However, disinfectant tolerance was not enhanced in the NRCS-A clone in comparison with that of strains from adult patients. In conclusion, the ability to form biofilm under nutrient stress and to survive desiccation are two major advantages for clone NRCS-A that could explain its ability to persist and settle in the specific environment of NICU settings. IMPORTANCE Neonatal intensive care units (NICUs) host extremely fragile newborns, including preterm neonates. These patients are very susceptible to nosocomial infections, with coagulase-negative staphylococci being the species most frequently involved. In particular, a Staphylococcus capitis clone named NRCS-A has emerged worldwide specifically in NICUs and is responsible for severe nosocomial sepsis in preterm neonates. This clone is specifically adapted to the NICU environment and is able to colonize and maintain on NICU surfaces. The present work explored the mechanisms involved in the persistence of the NRCS-A clone in the NICU environment despite strict hygiene measures. The ability to produce biofilm under nutritional stress and to resist desiccation appear to be the two main advantages of NRCS-A in comparison with other strains. These findings are pivotal to provide clues for subsequent development of targeted methods to combat NRCS-A and to stop its dissemination.


Assuntos
Desinfetantes , Sepse , Infecções Estafilocócicas , Staphylococcus capitis , Adulto , Recém-Nascido , Humanos , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Unidades de Terapia Intensiva Neonatal , Desinfetantes/farmacologia , Dessecação , Sepse/microbiologia
12.
BMC Microbiol ; 22(1): 203, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987607

RESUMO

PURPOSE: The objective of this study was to investigate the molecular characteristics and potential resistance mechanisms of linezolid-resistant (LZR) Staphylococcus capitis isolates from a tertiary hospital in China. METHODS: S. capitis isolates were obtained from clinical patient specimens; three of the isolates came from blood cultures and one from the hydrothorax. The agar dilution and E-test methods were used to identify antibiotic resistance. The chloramphenicol-florfenicol resistance (cfr) gene carrier status of the strains was determined by PCR. Whole-genome sequencing (WGS) was used to identify point mutations and L3, L4, and L22 mutations and to study the genetic environment of the cfr gene and the relationships between strains. RESULTS: The 4 isolates obtained in this study were all linezolid-resistant Staphylococcus strains. A similar of susceptibility profile pattern was observed in all four S. capitis strains, each of which exhibited a multidrug-resistant phenotype. A potentially novel mutation, C2128T, was identified, and the cfr genes of S. capitis strains were all positive. Additionally, the same mutations (C2128T and G2600T) were identified in all 23S rRNA sequences of the isolates, whereas mutations were lacking in the L3, L4, and L22 ribosomal proteins. The genetic environments surrounding cfr were identical in all four isolates. A schematic diagram of the phylogenetic tree showed that they were closely related to AYP1020, CR01, and TW2795, and a total of seven drug resistance genes were identified in these strains. CONCLUSIONS: The study indicated that the resistance of the Staphylococcus capitis strains to linezolid was caused by multiple mechanisms, and a potential novel mutation, C2128T, that may have an impact on bacterial resistance was identified.


Assuntos
Farmacorresistência Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus capitis , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes de RNAr , Humanos , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Mutação , Filogenia , RNA Ribossômico 23S/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/genética
13.
Nat Commun ; 13(1): 4254, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869070

RESUMO

Staphylococcus capitis, which causes bloodstream infections in neonatal intensive care units, is a common cause of healthcare-associated infections. Thus, a standardized high-resolution typing method to document the transmission and dissemination of multidrug-resistant S. capitis isolates is required. We aimed to establish a core genome multilocus sequence typing (cgMLST) scheme to surveil S. capitis. The cgMLST scheme was defined based on primary and validation genome sets and tested with outbreaks of linezolid-resistant isolates and a validation set. Phylogenetic analysis was performed to investigate the population structure and compare it with the result of cgMLST analysis. The S. capitis population consists of 1 dominant, NRCS-A, and 4 less common clones. In this work, a multidrug-resistant clone (L clone) with linezolid resistance is identified. With the features of type III SCCmec and multiple copies of mutations of G2576T and C2104T in the 23S rRNA, the L clone has been spreading silently across China.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus capitis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Recém-Nascido , Linezolida/farmacologia , Linezolida/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Tipagem de Sequências Multilocus/métodos , Filogenia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Staphylococcus capitis/genética
14.
Environ Res ; 205: 112511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871598

RESUMO

The present investigation reports the biotransformation of an endrocrine disrupting agent; 1,4-dioxane through bacterial metabolism. Initially, potential bacterial isolates capable of surviving with minimum 1,4-dioxane were screened from industrial wastewater. Thereafter, screening was done to isolate a bacteria which can biotransform higher concentration (1000 mg/L) of 1,4-dioxane. Morphological and biochemical features were examined prior establishing their phylogenetic relationships and the bacterium was identified as Staphylococcus capitis strain AG. Biotransformation experiments were tailored using response surface tool and predictions were made to elucidate the opimal conditions. Critical factors influencing bio-transformation efficiency such as tetrahydrofuran, availability of 1,4-dioxane and inoculum size were varied at three different levels as per the central composite design for ameliorating 1,4-dioxane removal. Functional attenuation of 1,4-dioxane by S. capitis strain AG were understood using spectroscopic techniques were significant changes in the peak positions and chemical shifts were visualized. Mass spectral profile revealed that 1.5 (% v/v) S. capitis strain AG could completely (∼99%) remove 1000 mg/L 1,4-dioxane, when incubated with 2 µg/L tetrahydrofuran for 96 h. The toxicity of 1,4-dioxane and biotransformed products by S. capitis strain AG were tested on Artemia salina. The results of toxicity tests revealed that the metabolic products were less toxic as they exerted minimal mortality rate after 48 h exposure. Thus, this research would be the first to report the response prediction and precise tailoring of 1,4-dioxane biotransformation using S. captis strain AG.


Assuntos
Dioxanos/metabolismo , Staphylococcus capitis , Algoritmos , Biotransformação , Filogenia , Staphylococcus capitis/metabolismo
16.
Prep Biochem Biotechnol ; 52(1): 108-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34289774

RESUMO

Using the statistical approach, this work seeks to optimize the process parameters to boost the generation of an organic solvent-tolerant lipase by Staphylococcus capitis SH6. The main parameters influencing the enzyme production were identified by using Plackett-Burman's screening design. Among the test variables, only tryptone (25 g/L), malt extract (2.5 g/L), NaCl (10 g/L) and pH (7.0) contributed positively to enzyme production. Then, the crude lipase was immobilized by adsorption on CaCO3 at pH 10. A maximum immobilization efficiency of 82% was obtained by incubating 280 mg of enzyme with CaCO3 (1 g) during 30 min. The immobilized lipase was more stable toward organic solvents than the free enzyme. It retained about 90% of its original activity in the presence of ethanol and methanol. After that, the immobilized enzyme was used for biodiesel production by transesterification process between waste oil and methanol or ethanol during 24 h at 30 °C. Our results show that the lipase can be utilized efficiently in biodiesel industry. Likewise, we have demonstrated that the immobilized enzyme may be implicated in the biodegradability of waste grease; the maximum conversion yield into fatty acids obtained after 12 h at 30 °C, was 57%.


Assuntos
Biocombustíveis , Enzimas Imobilizadas/metabolismo , Gorduras/metabolismo , Lipase/metabolismo , Staphylococcus capitis/enzimologia , Biodegradação Ambiental , Biocombustíveis/análise , Biocombustíveis/microbiologia , Esterificação , Solventes , Staphylococcus capitis/metabolismo
17.
Cienc. tecnol. salud ; 9(2): 189-198, 2022. il^c27
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415975

RESUMO

La contaminación por plásticos petroquímicos es una grave amenaza para el medio ambiente que requiere im-plementar alternativas como los bioplásticos para lograr un desarrollo sostenible. Los polihidroxialcanoatos (PHA) son polímeros utilizados para la producción de plásticos biodegradables y que han llamado la atención como sustitutos de los plásticos de base fósil. Sin embargo, el costo de producción de los PHA constituye una barrera para su producción industrial a gran escala. Las de bacterias de hábitats salinos son microorganismos prometedores para la síntesis de PHA debido a sus características tales como altos requisitos de salinidad que previenen la contaminación microbiana, la alta presión osmótica intracelular que permite una fácil lisis celular para purificar los PHA y la capacidad para usar un amplio espectro de sustratos. La presente investigación planteó determinar las cepas nativas de bacterias halófilas y halotolerantes de la Laguna de Ayarza capaces de producir PHA, establecer la capacidad que tienen de utilizar residuos agrícolas para la producción de PHA y determinar su eficiencia. Esto se logró a través de la inoculación de las cepas productoras de PHA en medios de fermentación con pulpa de café, cáscaras de plátanos y salvado de trigo lo que permitió determinar las cepas más eficientes. Se encontró que las bacterias productoras de PHA pertenecen a las especies: Alcaligenes faecalis, Bacillus idriensis, Bacillus megaterium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis y Sta-phylococcus capitis y que las cepas AP21-14, AP21-10 y AP21-03 mostraron los mejores resultados que podrían ser prometedores para la producción a nivel industrial.


Pollution by petrochemical plastics is a serious threat to the environment that requires the implementation of al-ternatives such as bioplastics to achieve sustainable development. Polyhydroxyalkanoates (PHAs) are polymers used for the production of biodegradable plastics and have drawn attention as substitutes for fossil-based plastics. However, the cost of producing PHAs constitutes a barrier to their large-scale industrial production. Bacteria from saline environments bacteria are promising microorganisms for PHA synthesis due to their characteristics such as high salinity requirements that prevent microbial contamination, high intracellular osmotic pressure that allows easy cell lysis to purify PHAs, and the ability to use a broad spectrum of substrates. This research project aimed to determine the native strains of halophilic and halotolerant bacteria from Laguna de Ayarza capable of producing PHA, establish their ability to use agricultural residues for the production of PHA, and determine their efficiency. This was achieved through the inoculation of the PHA-producing strains in fermentation media with coffee pulp, banana peels and wheat bran, which allowed determining the most efficient strains. It was found that the PHA-producing bacteria belong to the species: Alcaligenes faecalis, Bacillus idriensis, Bacillus mega-terium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis and Staphylococcus capitis and that the strains AP21-14, AP21-10 and AP21-03 showed the best results that could be promising for production at an industrial level.


Assuntos
Humanos , Halomonas , Poli-Hidroxialcanoatos/análise , Plásticos Biodegradáveis/química , Pseudomonas/química , Bacillus megaterium/química , Laguna Costeira , Alcaligenes faecalis/química , Fermentação , Staphylococcus capitis , Exiguobacterium/química , Guatemala , Resíduos Industriais/efeitos adversos
18.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361741

RESUMO

Due to their richness of bioactive substances, rose hips are a valuable raw material for obtaining extracts with potential antimicrobial activity. The aim of the study was to determine the antagonistic potential of whole pseudo-fruit and flesh extracts of three Rosa sp. varieties against Staphylococcus spp. bacteria isolated as food contaminants. The biological material in this study consisted of seven strains of bacteria from the genus Staphylococcus. Two strains-Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis DSMZ 3270-were used as reference strains. The other five strains were food-derived isolates-S. epidermidis A5, S. xylosus M5, S. haemolyticus M6, S. capitis KR6, and S. warneri KR2A. The material was the pseudo-fruits of Rosa canina, Rosa pomifera Karpatia, and Rosa rugosa. The polyphenols were extracted from the fleshy part and the whole pseudo-fruit for all rose varieties. The tested preparations differed significantly in their polyphenol composition. The sum of polyphenols ranged from 28 862 to 35 358 mg/100 g of lyophilisate. The main groups of polyphenols found in the preparations were flavanols and ellagitannins. All of the tested extracts inhibited the growth of staphylococci at a concentration of 500 mg/mL. Rosa rugosa fruit extract showed the strongest antimicrobial properties among the studied extracts. For all the strains, the growth inhibition had a diameter of 20.3-29.0 mm. Moreover, six out of the seven tested strains showed the highest inhibition with the use of this extract. The MIC of rose extracts was in the range of 3.125-500 mg/mL and was strictly dependent on the bacterial species, the species of the rose, and the part of the fruit from which the extract was obtained. Correlations were assessed between the main groups of polyphenols in the extracts and their inhibition of bacterial growth. In the case of pseudo-fruit extracts, the inhibitory effect on bacterial growth positively correlated with the content of ellagitannins, and this effect was observed for almost all the tested strains. The results presented herein follow the current trend of minimising the use of chemical preservatives in food; from this point of view, rose extracts are very promising.


Assuntos
Antibacterianos/química , Flavonoides/química , Taninos Hidrolisáveis/química , Polifenóis/química , Rosa/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos/métodos , Frutas/química , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Taninos Hidrolisáveis/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus capitis/efeitos dos fármacos , Staphylococcus capitis/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/crescimento & desenvolvimento
19.
BMC Infect Dis ; 21(1): 416, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947342

RESUMO

BACKGROUND: Prosthetic joint infection (PJI) is one of the most feared complications following total arthroplasty surgeries. Gram-positive bacteria are the most common microorganisms implicated in PJIs, while infections mediated by fungi only account for 1% of cases. When dealing with PJIs, a two-stage revision arthroplasty is widely used. Briefly, a spacer is introduced until re-implantation of the definitive prosthesis to provide skeleton stabilization while delivering antibiotics in the site of the infection. Sometimes, antimicrobial therapy may fail, but the isolation of a second microorganism from the spacer is uncommon and even less frequent that of a yeast. CASE PRESENTATION: Here is described a case of a 75-year-old woman who underwent two-stage revision surgery of the left hip prosthesis secondary to a Staphylococcus capitis infection, whose spacer was found to be infected by Candida albicans at a later time. Briefly, the patient underwent revision surgery of the hip prosthesis for a suspected PJI. After the debridement of the infected tissue, an antibiotic-loaded spacer was implanted. The microbiological analysis of the periprosthetic tissues and the implant depicted a S. capitis infection that was treated according to the antimicrobial susceptibility profile of the clinical isolate. Three months later, the patient was admitted to the emergency room due to local inflammatory signs. Synovial fluid was sent to the laboratory for culture. No evidence of S. capitis was detected, however, a yeast was identified as Candida albicans. Fifteen days later, the patient was hospitalized for the removal of the infected spacer. Microbiological cultures confirmed the results of the synovial fluid analysis. According to the susceptibility profile, the patient was treated with fluconazole (400 mg/day) for 6 months. Seven months later, the patient underwent second-stage surgery. The microbiological tests on the spacer were all negative. After 12 months of follow-up, the patient has fully recovered and no radiological signs of infection have been detected. CONCLUSIONS: Given the exceptionality of this complication, it is important to report these events to better understand the clinical outcomes after the selected therapeutic options to prevent and forestall the development of either bacterial or fungal spacer infections.


Assuntos
Candidíase/cirurgia , Prótese de Quadril/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/cirurgia , Infecções Estafilocócicas/cirurgia , Idoso , Antibacterianos/uso terapêutico , Artroplastia de Quadril , Candida albicans/isolamento & purificação , Candidíase/microbiologia , Feminino , Humanos , Reoperação , Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/patogenicidade
20.
Nat Commun ; 12(1): 1887, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767207

RESUMO

Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production.


Assuntos
Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus/genética , Staphylococcus/metabolismo , Tioguanina/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Coagulase/deficiência , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Purinas/biossíntese , Proteínas Ribossômicas/biossíntese , Staphylococcus aureus/patogenicidade , Staphylococcus capitis/metabolismo , Staphylococcus epidermidis/metabolismo , Tioguanina/farmacologia , Transativadores/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...